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ABSTRACT

When a radar pulse impinges upon a target, the resultant

scattering process can be solved as a linear time-invariant

(LTI) system problem. The system has a transfer function with

poles and zeros. Previous work has shown that the poles are

independent of the exciting waveform and target's aspect, but

they are dependent on the target's structure and geometry.

This thesis evaluates the resonance estimation performance of

two signal processing techniques: the Kumaresan-Tufts

algorithm and the Cadzow-Solomon algorithm. Improvements are

made to the Cadzow-Solomon algorithm. Both algorithms are

programmed using MATLAB. Test data used to evaluate these

algorithms includes synthetic and integral equation generated

signals, with and without additive noise, in addition to new

experimental scattering data from a thin wire, aluminum

spheres and scale model aircraft.
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I. INTRODUCTION

When a radar pulse impinges upon a target, the resultant

scattering process can be solved as a linear time-invariant

(LTI) system problem. The system has a transfer function with

poles and zeros. This description is provided by the

Singularity Expansion Method (SEM) developed by Dr. Carl Baum

[Ref. 1), of the Air Force Weapons Laboratory at Kirtland Air

Force Base. Baum's SEM describes the induced current and

scattered field using damped sinusoidal waveforms which

resonate with complex natural frequencies unique to the

object. These frequencies are determined by the object's

composition and structural geometry. Natural frequencies are

also the complex poles of the transfer function. These poles

are independent of the incident electromagnetic excitation,

including aspect and polarization, as initially postulated by

Moffatt and Mains [Ref. 2). Morgan [Ref. 3) has shown that a

target scattering response (following illumination) can be

represented as a weighted expansion of complex natural

resonances whose poles are independent of the incident

electromagnetic excitation. The problem of classifying a

radar target can be solved, in principle, by determining the

pole positions of the target's response.
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Although this idea is not new, early attempts to

demonstrate the practicability of such an identification

system have produced poor results due to the presence of noise

in the system. Two separate signal processing algorithms have

been developed by Kumaresan-Tufts [Ref. 4) and Cadzow-

Solomon [Ref. 5) to locate target poles with a high

degree of accuracy, in the presence of noise. The Kumaresan-

Tufts algorithm is intended for purely auto-regressive (AR)

signals, while the Cadzow-Solomon algorithm is intended for

auto-regressive moving-average (ARMA) signals. This thesis

evaluates the viability of these two signal processing

techniques by using new experimental electromagnetic

scattering data. The use of this method improves

identification of natural resonances in noisy signals with the

correct selection of problem parameters.

A. THE PROBLEM

The approach employed to classify radar targets is

comprised of two steps, based on natural resonances. The

first step locates the position of the poles of the targets of

interest. Numerical analysis of integral equation techniques

will derive the poles for simple targets, e.g., a thin wire.

For more complicated targets such as aircraft, the poles must

be extracted from actual measurements of the target's response

to incident electromagnetic excitation. The information

2



collected can then be used to form a database for comparison

to the data obtained in actual field use.

The second step for target classification is the

comparison of the data obtained in field measurements with the

data contained in the database. The target is classified

based on the closest data match. One method of accomplishing

the classification is to use the same signal processing

technique that was used to form the database initially. Speed

is an important factor in the classification process, as the

time required to achieve classification must be less than the

time for the target to become a threat. Another, more

efficient 4ay to perform the comparison is to employ the use

of annihilezion filters, as proposed by Morgan and Dunavin

[Ref. 6]. This approach employs energy cancellation

based upon the location of the target's poles. For example,

a total target response (including early-time and late-time)

may be subjected to a bank of annihilation filters. The

filter that corresponds to the proper target will exhibit, in

theory, a response coincident with the driven portion of the

target response while annihilating the signal during the late-

time portion of the response.

A system used for classification of radar targets would

require a bank of annihilation filters corresponding to each

class of target. The system could then determine the class of

target, based on the filter producing the minimal amount of

output energy.

3



B . BACKGROUND

Transient electromagnetic scattering can be described by

showing an incident field in free space illuminating a

perfectly conductive finite-sized object. Figure 1 depicts

induced current on a scattering body. The magnetic field

integral equation (MFIE)

UNIT NORMAL

L. n

p

H' (rt) PERFECTLY CONDUCTING

SCATTERING BOOY WITH
INCIDENT FIELD INDUCED CURRENT

Figure I Transient electromagnetic scattering

describes induced current on the surface of a scattering body

as:

SPI C

where,

- J is the electric current density,

0 . is the unit normal vector outward to the surface,
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* R' is the incident magnetic field intensity at the

surface,

* ? is the dyadic Green's function kernel

and, the principal-value (PV) type integral excludes the point

T-V .  The cross product, 2iTxRE, represents the physical

optics portion of the induced current. The principal-value

surface integral, Spv, represents the contribution due to

induced physical optics currents other than the contribution

from the cross product. This current represents "feedback"

effects from currents at other points on the object.

When 7R1=O, Equation (1) solutions become the source-free

("natural") current modes of the scattering problem. These

modes may be described by the sum of the exponentially damped

sinusoids, or: " ,(f)exp(st), where s, are the poles or

natural resonance frequencies in complex conjugate pairs of

the form

sn=an+j-(an.  (2)

where,

* O2 = the damping rate in Nepers/sec,

0 Wn = the frequency in radians/sec.

These resonance frequencies are functions of the geometry and

composition of the scattering object. Although the number of

poles is, in theory, infinite for any given object, only a

5



finite subset will be excited, due to the finite bandwidth of

the incident field.

Figure 2 represents a plane wave impulse illumination,in

which part of the object has been illuminated from the

Pa

INITIAL

IMP ACT

AT f-0

p

Figure 2 Plane wave impulse illumination

incident field wavefront. The scattered field is composed of

two parts: the early-time driven response and the late-time

natural mode response. The early-time driven response occurs

as the excitation wavefront travels over the object and each

point becomes excited. The late-time natural mode response

occurs, by definition, when the excitation has 
been completed

over the complete body. Throughout the early-time phase, the

impulsive plane wave incident field will be identically zero

at all points on the surface except on the conformal ring

6



where the intersection with the wavefront occurs. This area

is indicated by the dotted line in Figure 2. This conformal

ring changes cross-sectional shape and position as the

wavefront moves. The induced surface current on the ring is

therefore composed of the physical optics term plus the

feedback current, as described in Equation (1). Thus, no

induced current is present at the area of the object ahead of

the wavefront.

The back-scattered far-field, resulting from the surface

current on the object, will be of the form

(-r,1 )4iCr atJJ'.' / t C(3
S

The unit vector d indicates the direction of the plane wave's

propagation. The back-scattered far-field for a fixed point

is then a result of integrating the current at every point on

the object's surface. Thus, the back-scattered far-field will

be of the form

Tfs(-.rj5,t):u(t - - ).[? (-r, t)+£ ,(-r ,t)exp(s.t)]. (4)

no0

Two individual terms emerge from these calculations. The

first term in Equation (4) represents the physical optics

scattered field generated by the 2zfxTV driven current. The

second term represents the scattered field produced by the

7



source-free wake current or "feedback" current. The physical

optics scattered field is highly aspect dependent.

During the early-time portion of the target's response,

the scattered field produced by the "feedback" current term in

Equation (4) contains exponential resonance terms with time-

varying coefficients H, as described by the Singularity

Expansion Method (SEM) [Ref. 1]. This form of the SEM

expansion is termed "Class 2" and is presented analytically by

Morgan [Ref. 7]. For the monostatic scattering case,

the transition from early-time to late-time in the target's

response will occur at

A t=z+ (1+cosa)-T (5)
C

after the leading edge of the scattered pulse returns to the

radar antenna, where,

* v is the incident pulse width,

* D is the target's largest dimension, and

" a is the aspect of the target.

The term a also represents the angle between the target's

largest dimension and the direction of wave propagation, where

c is the velocity of propagation or speed of light. At this

transition time, the physical optics field vanishes. During

the late-time portion of the target's response only the second

term in Equation (4) remains. However, it is now comprised of

8



constant coefficients, Rn. This form of the late-time SEM

expansion is termed "Class 1".

The early-time scattered field is therefore constituted of

both a physical optics term and a "Class 2" SEM expansion with

time-varying coefficients, while the late-time scattered field

is described by a simple "Class I" SEM expansion with constant

coefficients.

9



11. POLE EXTRACTION ALGORITHMS

Obtaining the target response is the first step to be

completed in a Non-Cooperative Target Recognition (NCTR)

system. Once the response is obtained in time domain, the

target's poles may be located. Numerically, these poles may

be described by the damping rate a and the radian frequency

a or, in other words, the complex number indicating the pole's

location in the s-plane or z-plane. The location of the poles

may also be described analytically by solving the boundary-

value electromagnetic problem. This may be easily done only

for simple shape targets like thin wires and spheres.

However, for general targets, detailed knowledge of the

target's composition (dimensions and materials) and, also,

access to a large amount of computing power is required.

The next section of this thesis discusses the analytical

method which is used to compare the poles extracted from

measurements taken with a thin wire. The viability of the

Cadzow-Solomon algorithm will also be tested.

A. EARLY METHODS

The NCTR system is used to discriminate and to classify

targets with relatively similar shapes and dimensions. In

10



such cases, the location of the poles from these targets will

be relatively close, requiring a high degree of precision in

measurement and estimation. A basic method in signal

processing is to obtain the signal's spectrum using the Fast

Fourier Transform (FFT). The FFT algorithm yields results in

a short amount of time. However, the FFT may be used only as

a tool to add information to the basic methodology when

locating radar target natural resonances. This is because the

frequency resolution, equal to the reciprocal of the time

interval between the samples, is of the order of several MHz

or higher. Another limitation of the FFT is that it provides

only real frequencies within a signal, while both the damping

rate and the frequency of the poles are required for target

classification.

Thus, other methods providing more accurate results needed

to be developed.

1. Direct Minimization

As previously described, the transient scattered

signal waveform will have the form

y(t) =y,(t) [u(t) -u(t-TO) +yL(t) "u(t-TO) +N(t) (6)

where,

* y,(t) is the early-time portion,

" yL(t) is the late-time portion and

" N(t) is the undesirable noise and clutter.

11



Morgan [Ref. 7] presents the way to determine the natural

resonance parameters by modeling the late-time scattering

response as a sum of damped sinusoids,

L (t) =E A.exp (ot) -cos (.t+*.) (7)
n-1

where 7 represents the modeled signal and A.-exp (j#.)

represents the aspect dependent residues. The digital domain

form of the model is

N

(kMA t) =9k=r An.exp (a'kA t) cos (w.'kA t+40) (6)
n-i

where,

" A. is the amplitude,

" a. is the damping rate,

" ca is the radial frequency, and

* *n is the phase.

After comparing the modeled signal 9, to the actual received

discrete signal yn, the mean square error may be obtained as

en= (yn-g,)2 . The four parameters of the model (An, *O, On, Wn)

may then be adjusted in order to derive the mean square error

minimum. As this is a multi-dimensional, highly non-linear

minimization problem, it is computationally inefficient.

12



2. Pronyle Method

Blaricum and Mittra [Ref. 8] present a novel

approach for systematically deriving the complex poles and

residues of a target from a set of time domain data. The

method is based on Prony's algorithm, used to model the late-

time response of a radar target. The set of time domain data

is the discrete set of sampled transient values of the impulse

response I(t.) or I.. The method is based on the fact that

I. must satisfy a difference equation of order N, written as

N-I

P-O

where p+k=0,1,...,2N-l and 2N are the data samples used. This

leads to the solution of a matrix equation

'1'2*' " 'N I [a11] [Ii]1

-T • '2N (10)

41 IN .. - . -i t 2 _ (10)

After the coefficients a. are found, the method solves the

roots of a polynomial as

z "-a1 zX-1...-a =o. (11)

If dm (m=l,2,...,N) represents those roots, then the poles of

the system model in the z-plane are the roots d .. The poles

in the s-plane may be found using the formula

13



ln (d) (12)

At

where A t is the time-stepping interval used in obtaining the

sampled data. The matrix in Equation (10) is in the form of

a transposed Vandermonde matrix, whose inverse can be computed

in closed form. This method requires at least 2N equally

spaced transient data samples to find N poles. If greater

than 2N samples are desired, then one may obtain a least

squares type fit to the matrix in Equation (10). Since the

system order is not known a priori in the NCTR problem,

Blaricum and Mittra [Ref. 9] present two schemes for

determining the number of poles contained in the transient

response. The first is the Householder orthogonalization

method, and the second is an eigenvalue method. When the data

are noisy, Blaricum and Mittra [Ref. 9] indicate that the

eigenvalue method is the better method. This method will be

discussed in Section 3 of this chapter when a bias

compensation method is examined.

3. Kumaresan-Tufts Algorithm

Kumaresan and Tufts [Ref. 4] modified Prony's method

by using the "backward linear prediction" technique and

"singular value decomposition" (SVD) to alleviate the

sensitivity to noise and the need for a priori knowledge of

the system order.

14



Analytically, Kumaresan-Tufts algorithm modifies

Prony's method as follows:

• The system order is intentionally overestimated. The
excess order provides the flexibility to the system to
model the noise, improving the estimation of parameters of
exponentially damped sinusoidal signals in noise.

" Singular value decomposition alleviates severe ill-
conditioning of the data matrix.

• The causality of the system is used to separate the
computed signal's poles from the spurious computed noise
poles introduced by the overestimated system order.

The separation of the signal poles from the noise

poles is the result of the "backward prediction" that causes

the signal poles to fall outside the unit circle in the z-

plane, while the extraneous "noise poles" fall inside the unit

circle.

Moderately large values of system order are essential

in improving the accuracy of the pole location estimates.

a. System Model

Suppose that the N samples of the observed time

domain data of a response signal y(n) consists of samples of

M exponentially damped signals in white Gaussian noise w(n),

as represented by

K

Y(n)=N akxp(skn)+w(n), n=0,1,...,N-1. (13)

The following linear prediction equations can be formed, using

real time domain data in the backward direction.

15



y(2) y(3) ... y(L+1) I 1
Y(3) y(4) y(L 2) a() y() (4)

(N-L)
Y(N-L+1) ...... y(A) a(L) )

The terms of the above equation may be also represented by

D-a=-h (14a)

where,

" D is the data matrix (N-L)xL,

" a is the vector of backward prediction coefficients
(Lxi), and

* h the data vector (N-L)xl.

In the above matrix equation, L represents the overestimated

system order, chosen to satisfy the inequality M5LSN-M. The

matrix equation is solved with the SVD method, using the

pseudoinverse matrix D+, as a=D '(-h). Here the coefficients

a1 correspond to those in Equation (11), where the roots of

the polynomial define the poles of the system model in the z-

plane.

As with Prony's method, the Kumaresan-Tufts method

is intended for purely auto-regressive (AR) signals. Both

methods, therefore, use the late-time portion of the response

signal when addressing the target classification problem.

16



b. Bingular Value Decomposition

Singular value decomposition (SVD) is the basic

technique on which the Kumaresan-Tufts algorithm is based.

There are two main advantages with SVD:

* It helps to alleviate the effects of ill-conditioning of
the data matrix.

" It separates the signal poles from the noise poles.

The following discussion of SVD is a synopsis of material

taken from Strang [Ref. 10].

The SVD is closely associated with the eigenvalue-

eigenvector factorization of a symmetric matrix : A=QA'QT.

SVD makes a similar factorization, but for any (mxn) matrix

A, as follows:

A=QE 2.T (5

where Q,, Q2 are two orthogonal matrices and M is the diagonal

(but rectangular) matrix with its positive entries (also

called sigma, in the form of a., 02,..., 0). These entries are

the singular values of A, filling the first r places on the

main diagonal of E, where r is the rank of A. These entries

sigma are also the square roots of the nonzero eigenvalues of

both AAT and ATA. The columns of Q0 (mxm) are eigenvectors of

AAT, and the columns of 02 (nxn) are eigenvectors of ATA.
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The SVD works well for numerically stable

computations. An initial reason is that Q1 and 02 are

orthogonal matrices that never change the length of a vector.

Since IIOxI12=xToTOx=lIx 12 , multiplication by Q cannot destroy

the scaling. A second reason is that SVD gives a more stable

measure of the rank of A.

The prime use of SVD is to solve every linear

system in the form of Ax=b. For every matrix A (m x n), which

can be factored into A=01"-Q 2T, another matrix can be defined.

This matrix will be the pseudoinverse of A, as follows:

A-=O2.*z. T (16)

where, 01,0 2 are the same orthogonal matrices found with the

SVD. The value E" is the diagonal (n x m) matrix, with its

entries on the main diagonal being 1 1 1 Thea01 0 o

optimal solution of Ax=b is

x =A b (17)

that is, the minimum length solution to the nearest equation,

Ax=p. As the column space of A* is in the row space of A,

then x is always in the row space of A.
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To solve the system of equations in Equation (14),

the pseudoinverse of matrix D may be found as in Equation (16)

in the form D =VE*'UT , where E* will be a (L x (N-L)) matrix,

whose L singular values are the reciprocals of those found in

the E matrix. The minimum length least squares solution of

D-a=-h is a=D '(-h)=V 'UT(-h).

a. Bias Compensation

In the discussion of the SVD above, E is a (N-L)xL

diagonal matrix, with its entries being the square roots of

the nonzero eigenvalues of both DDT and DTD. In the noiseless

case, the prediction equations are satisfied exactly. If the

system order has been overestimated as L, when N is the actual

order of the system, the diagonal of E splits into a signal

subspace with N positive singular values of o1i2, ...,o" and

a subspace with L-M zero values. For the noisy signal case,

the first M positive signal values are perturbed into a noisy

signal subspace

01,02, .. , 1Gf with eigenvalues '2:... >1, (18)

and a noise subspace with L-M values

o, I0o2, *..., 0 with eigenvalues A'...)4. C19)

Kumaresan and Tufts noticed [Ref. 4] that the noise

perturbed the signal's singular values, the reason for the
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bias towards the unit circle in the z-plane in the pole

position estimates. Kumaresan and Tufts proposed a

compensation method which moves the poles back towards the

center of the z-plane. This method is based on averaging the

smallest L-M singular values, o,,#1'2#,...#OL and then

subtracting this average value from each of the first M

singular values, a.,02, ... ,' The smallest L-M values are

then set to zero and a new matrix, M, is used to compute the

pseudoinverse D*. Although Kumaresan and Tufts claim that

this method gives better results, the testing completed for

this thesis shows that the bias towards the center of the z-

plane is greater than the bias error that the noise makes.

This result causes much more perturbation on the pole position

estimates.

Norton [Ref. 11] proposed another

compensation method based on the Eigenvalue Shifting Theorem.

The noisy data matrix may be described by D=S+N, where S is

the noiseless signal data matrix and N is the noise data

matrix of the wide-sense stationary white noise process, vi,

written as

V1  lL]

N=~ (20)

0-L
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The expected value of DDT may be found from

DDT=E[(SN) (S+N) ]=E[SS +E[SNJ +E[NST +E[NNrJ. (21)

As white noise has a mean of zero, the two terms E[SN] and

E[NST ] become zero. Since the noise is wide-sense stationary,

E[N T_0'l, where a, is the noise variance and I is the

identity matrix. As S is deterministic, E[SS'1=SST . This

leads to the formula

E[DD 7 =SS 7+ 2'I. (22)

The eigenvalue shifting theorem [Ref. 11] describes the case

when the eigenvalues of SST are 1j, where the eigenvalues of

E(DD] are kr+c . Therefore, the eigenvalues of DDT, which

are the squares of the singular values of D, are increased by

the noise variance, a,.

In the noiseless case, these singular values would

be zero. If the noise singular values are squared and

averaged, an unbiased estimation of 02 may be obtained.

Norton [Ref. 11] proposed correcting the signal singular

values by first subtracting the noise variance a2 from the

squares of the first M diagonal entries of matrix 2: and then

taking the square root of the reduced values as the new
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diagonal entries of matrix M (while the noise singular values

are set to zero). As in the Kumaresan-Tufts bias compensation

method, the pseudoinverse D can be found from the new matrix

Although Norton's method seems to be a more correct

bias compensation method, both methods are based on the fact

that a decision has to be made about the actual order of the

system. The separation between the signal eigenvalues and the

noise eigenvalues is not readily obvious, because the

eigenvalues of matrix DDT or DTD appear to steadily decrease.

d. Performance and Earlier Results

Kumaresan and Tufts tested the algorithm, obtaining

good results using synthetic data with various levels of white

Gaussian noise, as low as 15 dB SNR. Norton [Ref. 11]

developed the algorithm as a computer subroutine and tested it

with various sets and types of data. Synthetic data were

tested at various SNR values, ranging from 90 dB to 7 dB.

When the SNR decreased, the error in pole position estimates

increased. Norton claimed that the algorithm gave good

results for SNRa20 dB. Norton also used simulations of thin

wires produced by Morgan's Time-Domain thin wire integral

equation (TDIE) computer program to test the algorithm. The

results of those tests illustrated the aspect independence on

estimated poles of the target, [Ref. 11].
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Larison [Ref. 12] programmed the algorithm

using Fortran and tested synthetic and thin wire integral

equation data at various SNR's ranging from 90 dB to 7 dB.

Like Norton, he claimed good results in extracting the low

frequency poles position with SNR as low as 20 dB by using

Norton's bias compensation method. Larison maintained that

the two most critical parameters are:

0 to select the appropriate starting point to begin the data
processing

* to select the appropriate system order to provide the best
possible results.

The algorithm has been tested by the author of this

thesis, after developing the algorithm using MATLAB. The

algorithm was tested using synthetic data at various SNR's

ranging from 30 dB to 10 dB, without using the bias

compensation method. The synthetic signal response is based

on ten pole pairs within a frequency range of 1-10 GHz, with

a medium Q damping factor using k=0.7. This chosen value of

k simulates typical expected levels of damping from measured

scattering responses of real targets (e.g., the thin wire).

Damping factor and SNR level are discussed, in detail, in

Chapter III, Section A, of this thesis. Table I shows the

poles and residues used for the testing.

Figures 3 to 10 illustrate the evaluation of the

Kumaresan-Tufts algorithm. Figures 3 to 6 illustrate the

synthetic signal waveform for various SNR's. Figures 7 and 8

illustrate the spectrum of the synthetic signal for SNR=30 dB
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and SNR=10 dB. Figures 9 and 10 illustrate the true and the

algorithm poles in both the s-plane and z-plane, for various

SNR's. For the above simulation, the values used for N and L

were 300 and 60, respectively, while M (actual order) was 20.

The simulation revealed that as the noise increases relative

to the signal, there is a bias of all the poles towards the

unit circle, specially the higher frequency poles.

Table I MEDIUM Q SYNTHETIC POLES

fn an On An  On

[GHz] [GNp/s] [Grad/s]

1 -0.3562 6.2752 1 0

2 -0.7124 12.5504 1 0

3 -1.0687 18.8256 1 0

4 -1.4249 25.1007 1 0

5 -1.7811 31.3759 1 0

6 -2.1373 37.6511 1 0

7 -2.4935 43.9263 1 0

8 -2.8498 50.2015 1 0

9 -3.2060 56.4767 1 0

10 -3.5622 62.7518 1 0
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B. CADZOW-SOLOMON ALGORITHM

Many investigators have used both excitation and response

data to identify linear systems. Cadzow and Solomon [Ref. 5]

proposed an identification procedure in which both the

excitation and response are contaminated by white noise. This

method is based upon the null space characterization of an

associated "data matrix". The Cadzow-Solomon algorithm is

used in this thesis to simulate and demonstrate the

identification problem.

1. System Model

The Cadzow-Solomon algorithm is based upon the Auto-

Regressive Moving-Average (ARMA) model. In an ideal modeling

situation, the assumption may be made that the excitation

signal x(n) and the response signal y(n) are perfectly

related by means of an ARMA relationship, such that

L K

y(n)- ay(n-i) ;b',x(n-i), (23)

as associated with the transfer function

H(z)= b.*blz -1+''+bKz-X (24)1l ajz - - . _aLZ  - L

where,

• a, are the coefficients which correspond to the poles of
the transfer function, and

29



* bi are the coefficients which correspond to the zeros of

the transfer function.

The order of the numerator of the system's transfer function

is K and the order of the denominator is L. The classic

modeling problem is to identify the system's coefficients, a1

and bi, from a finite set of observations of the excitation,

x(n), and response, y(n), time series.

Cadzow-Solomon present the set of equations for the

algorithm in matrix form as follows:

(0) y(-1).. Y(-P) I I x(0) x(-1) ... x(-q)

()0 y(N-1) y(N-p)] [a1  x(N) x(N-I) x(N-q) (

or, more concisely

YpapX (26)

where,

* Xq is the (N+l)x(q+l) "excitation data matrix",

* Yp is the (N+l)x(p+l) "response data matrix",

* a. is the (p+l)xl "auto-regressive parameter vector" and

" bq is the (q+l)xl "moving-average parameter vector".

The least squares solution for a causal, real data,

overestimated ARMA model (pkp, qiq) can be found by taking a
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linear algebraic approach based on the eigenvalue-eigenvector

decomposition of the data matrix Do,=[Y;"Xql as

Dp'Dp. uk'Uk, 1 jkrp~q+2. (27)

The parameter vector is found from the procedure to be

q Uk(j)1 ~* Uk(1) -(28)

where Y. is the eigenvector associated with the eigenvalue I..

If the actual system order is (p,4), then the system order is

less than the overestimated order (p, q) . At least

s=1+min(p-p,q-4) of the eigenvalues in the decomposition, as

described in Equation (27), must be identically zero for the

noise-free case.

Following the technique of "backward prediction" as

used in the Kumaresan-Tufts algorithm, the matrix equation

(Equation 25) may be modified as follows:

* y(2) ... y(Ll) x(1) ... x(K+1) a'

[ y(3) ...y(L+2) x(2) x(K 2) a,= y(2) (29)

y(N-L+I) ... y(N)pc (N-L) ... x(N-L+K)V :-

or, in matrix notation

[D,,]" _ . (30)
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This matrix is associated with the coefficients a, and b, as

shown in Equations (23) and (24). The size of the excitation

and response data matrices are (N-L)x(K+l) and (N-L)xL,

respectively, while the size of the ARMA parameter vector is

(L+K+I)xl.

As in the Kumaresan-Tufts case, singular value

decomposition can also be used in Cadzow-Solomon's algorithm

to provide the minimum-norm solution. Its use reduces ill-

conditioning of the data matrix, Dyx, and separates the signal

poles from the noise poles across the unit circle. The

optimal solution of Equation (30) is

[1= [Dyx]y. (31)

2. Bian Compensation

When the system's order, (p,q), exceeds the true order

of a noise contaminated system, (T,4), for p>p and q>4,

Cadzow and Solomon maintain that there will be

s=1+min(p-p,q-q) (32)

eigenvalues, which will asymptotically approach (N+l)- o for

large N, where o02 is the noise variance. The eigenvalues in
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the noise-free case are zero, and therefore, the parameter

vector may be found from the equation

a" =tI U.(1) 1]11uk'(1)7T (33)

where the 7. terms are the eigenvectors associated with the

smallest (s) eigenvalues, Ak.

However, the above method may not be applied exactly

as described above because

" the excitation noise, av, is zero for the radar target
classification problem, and

" the q-!, cannot be directly determined since the
extraneous zeros cannot be separated from the signal zeros
in the same manner as the poles are.

Another problem occuring in the Cadzow-Solomon's

algorithm is that additive noise is different for input and

output data. Norton (Ref. 11] described that if the input

data noise is v, and the output data noise is w., the noisy

data matrix may be expressed as

Dyx=[Dyi Dx=Syx+Nx (34)

where, Ny.=[NyN], or in matrix form

VI ... v k 1
VN:KL (35)

V3-L V.3 --
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W2 ... W,-1

W _L-1 ... W(36)

Therefore, the correlation product will be

4D~x Dy =yxS) +4Nyxa (37)

As the additive noise is different for the input and output

data, the noise correlation matrix E[NvxNy] is not of the form

a21. So, the eigenvalue compensation method that Norton

described as being applicable in the Kumaresan-Tufts algorithm

is not applicable in the Cadzow-Solomon algorithm.

By examining the diagonal entries of the data matrix

product, D.Dpq, it may be seen that the first (g) entries

are close to 1. In the noise-free case, these first (g)

diagonal entries are exactly equal to 1. This is a direct

consequence of the fact that the diagonal entries of DTq', q

contain bias errors proportional to the noise variances o2 and

o. Since the excitation data used in radar target

classification problems are noise-free, these bias errors are

proportional only to o2. The bias compensation may be

obtained by setting the first (g) diagonal entries equal to 1

and then finding the eigenvalues and eigenvectors from the
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corrected matrix, Dp'Dpq. The parameter vector may then be

found from

Ibk.l) r . *2* k kl (38)

3. Earlier Results

Norton [Ref. 11] programmed the Cadzow-Solomon

algorithm in Pascal and tested it on various types of data.

Using synthetic data, Norton tested the algorithm using three

SNR values, 30 dB, 20 dB, and 10 dB. The results were good at

the 30 dB level, but as the SNR decreased, the error in the

pole position estimates increased. Norton also used

simulations of thin wire scattering produced by Morgan's TDIE

computer program to test the algorithm, obtaining better

results than those obtained from the Kumaresan-Tufts

algorithm. These results occured because the Cadzow-Solomon

algorithm takes into account only the input and output data

and does not require purely late-time data.

Larison [Ref. 12] programmed the Cadzow-Solomon

algorithm in Fortran and tested it using synthetic data and

TDIE data, at various SNR's, ranging from 90 dB to 7 dB.

Using bias compensation, Larison claimed good results in

extracting the low frequency pole positions with SNR as low as

20 dB.
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Murphy [Ref. 13] tested the Cadzow-Solomon

algorithm using Larison's Fortran programs, using synthetic

data as well as thin wire integral equation generated data and

measured data. Murphy generated three separate signals, each

based on ten pole pairs covering the frequency range of 1-10

GHz. Depending on the level of damping for each signal,

Murphy obtained an average error between the true and the

extracted poles having values on the order of 10.2 for the

values

" SNR=10 dB and for HIGH Q,

" SNR=20 dB and for MEDIUM Q, and

* SNR=30 dB and for LOW Q.

Murphy made the observations that,

* The best results were obtained by choosing a starting
point located within several points of the zero crossing
nearest to the first obvious response of the excitation.

" The best results were obtained by using a data matrix in
which the overestimated number of poles to the true number
of poles was of the order of 2.5, while the number of
asking zeros was equal to the number of true zeros.

* The best results were not always obtained when using the
bias compensation scheme as proposed by Norton.

When processing the thin wire data, Murphy calculated the

feed-forward order of the system by determining the length of

early-time as equal to 2L/c. Recent research at NPS, that is

as yet unpublished, indicates that this method isnot correct,

as each excited point along the target excites its adjacent

point. This early-time may be described as (l+cosa)L/c, as

shown in Chapter III, where a is the aspect of the target.
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When processing the TDIE data, Murphy did not obtain good

results for SNR=20 dB, in spite of the fact that the poles

extracted from thin wire measured responses appeared to give

good results for the low frequency poles.
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III. ALGORITHM TESTING

The initial objective of this thesis was to evaluate the

viability of the Kumaresan-Tufts and the Cadzow-Solomon

algorithms. In a radar target classification problem the

finite duration excitation signal produces both early-time and

late-time response signals. In this situation, the Cadzow-

Solomon algorithm is more significant. Thus, the main effort

of this thesis was changed to evaluate and improve the Cadzow-

Solomon algorithm using both synthetic and real data. The

Kumaresan-Tufts algorithm was evaluated and tested only with

synthetic data, as presented in Chapter II.

The Cadzow-Solomon algorithm was tested in two phases.

The first phase of testing used synthetic data, while the

second phase was performed with thin wire measurement data.

The synthetic data testing phase attempted to simulate the

conditions expected from the response of a simple target

during the presence of a stationary white noise. The thin

wire data testing phase attempted to evaluate the conditions

appearing from a real target response. Those conditions were

then compared with those simulated from the computed Time

Domain Integral Equation (TDIE) thin wire response.
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A. SYNTHETIC SIGNAL MODEL

As the Cadzow-Solomon algorithm is based on the ARMA

model, the representation in Equation (23) has been used to

produce the synthetic signal response.

This signal response is based on ten pole pairs within a

frequency range of 1-10 GHz, with a medium Q damping factor

using k=0.7. The poles were developed in accordance with the

following equation:

Sn = -- in(k) (39)
Wn 27t

Table II lists the s-plane poles used in the synthetic signal.

Table II MEDIUM Q SYNTHETIC POLES

fn on n)
[GHz] [GNp/s] [Grad/s]

1 -0.3562 6.2752
2 -0.7124 12.5504
3 -1.0687 18.8256
4 -1.4249 25.1007
5 -1.7811 31.3759
6 -2.1373 37.6511
7 -2.4935 43.9263
8 -2.8498 50.2015
9 -3.2060 56.4767

10 -3.5622 62.7518

The chosen value of k simulates typical expected levels of

damping from measured scattering responses of real targets,

(e.g., the thin wire and scale model aircraft targets). The

sampling frequency used to convert the s-plane poles to z-

plane poles was 51 GHz, based on N=256 samples over a time

window of t0=5 nsec:
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fs= 1 N-1 (40)
A t to

1. Coefficient Generator and Recursive Signal Generator

The coefficients a, are obtained by multiplying the

terms (z-z) (z-z 2) ... (z-z 2o) , where z1 is the ith z-plane pole

associated with the s-plane pole in the relationship

z 1 =exp [ (a,+jw1 ) -A t] , (41)

and equal to the product of those terms with the polynomial

z 20 - a iz 19 -a 2zla- .. -a20. (42)

The coefficients b1 are obtained by the inverse partial

fraction expansion using the term R' , where R1 is the i th
Z-Z~i

residue of amplitude value 1 and phase difference 0 for each

of the signal poles. The time domain signal response of the

ARMA model is generated via Equation (23) with the values L=20

and K=19. This procedure has been developed in the MATLAB

computer program ARMAGEN1.M. The program listing appears in

Appendix A.
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2. Double Gaussian Smoothing Function .Generator

The excitation signal chosen for generating the test

signal response was the double Gaussian waveform, via the

equation

x (n) =A1exp (-a, t 2 ) -A 2exp (-a 2 t 2 ), (43)

with a41n(O) , T0. 147 nsec (44)

a2= 41n (10) ns0c3(45)
T2=. 314(45)

T2

where,
A,= A 2=A1 -1. (46)

This waveform is a wide Gaussian pulse with a ten percent

width of T2 nsec subtracted from a narrow Gaussian pulse with

a ten percent width of T, nsec. This results in a bandwidth

of 1 to 10 GHz. Figure 12 illustrates the, double Gaussian

waveform and Figure 13 illustrates the spectrum of the

waveform. This procedure has been developed in the computer

program EXCGEN.M in MATLAB. The program listing appears in

Appendix B.
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3. Synthetic Noise Generator

Synthetic noise was generated to contaminate the

signal response by adding a time series noise signal to the

signal response. The noise was assumed to be wide sense

stationary and white. To produce a Gaussian distribution, a

normal distribution function was multiplied with a standard

deviation value a, computed via the equation

N

[y(k)]
02= variance k-. 1 (47)

N SMR
10 10

where,

" y(n) is the signal response data,

" N is the number of time points and

" SNR is the Signal-to-Noise Ratio in dB.

This procedure was developed in the computer program

NOISEGEN.M in MATLAB. The program listing appears in

Appendix C.

4. Spectrum Estimation

Estimation of the power spectral density (PSD), also

called the spectrum of the sampled signal response, is

obtained employing the Fast Fourier Transform (FFT). This

spectrum may be computed via the equation

S(k) =-L-IY(k) 12 (48)
N
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where,

" N is the number of time points (power of 2),

• Y(k) is the FFT of the signal y(t) and

" S(k) is the periodogram spectral estimate of y(t).

This procedure was developed through the computer program

SPECTRUM.M in MATLAB. The program listing appears in

Appendix D.

B. SYNTHETIC SIGNAL TESTING RESULTS

This procedure shows the weaknesses of the Cadzow-Solomon

algorithm by using no bias compensation. Cases were examined

for the three different SNR's of 30, 20 and 10 dB.

Overestimation varied from 2:1 up to 5:1, e.g., for 20 true

poles and 60 asking poles, the ratio is 3:1. The interval

processed was composed of 200 points, starting where the

excitation began.

Figures 11-23 illustrates the results of this effort.

Although the generated SNR's were 30, 20 and 10 dB, the

resulting SNR's over the processed window were 2 dB higher.

Observations made led to the following factors, thus improving

results as previously obtained from the Cadzow-Solomon

algorithm.

* The most significant factor is to select the excitation
starting point as the point to start the algorithm
processing.
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* The second significant factor is to select the system
order or number of asking poles. In the case of 20 true
poles, 60 asking poles gives the most accurate results for
all SNR's employed.

* A third significant factor is to determine the number of
unknown zeros. For synthetic data, the position of the
low frequency poles was obtained with better accuracy when
this number was equal to the number of asking poles than
with the case where the number of asking zeros was equal
to the number of true poles.

Figure 23 illustrates the case of K+1=20 (as compared to

Figure 19 for K+1=60), where (K+1) represents the number of

asking zeros. In the case where K+I1=20, more poles were

obtained within the unit circle (as compared to the case where

K+1=60) at the frequencies of the true poles, but with a

different damping factor. The experimental data indicates the

following result:

° There is a bias of all the poles towards the unit circle
that results in the loss of some poles. The bias is so
large that it forces the poles to appear on the other side
of the unit circle as noise poles.

By examining the spectra of the synthetic signal at different

noise levels, as illustrated in Figures 15-16, it may be

noticed that the high frequency poles cannot be completely

separated from the white noise spectrum when increasing the

noise level. This is due to the fact that these high

frequency poles carry very little energy.

The set of equations in matrix form developed in Equation

(29) have been developed in the computer program CADSOL1.M in

MATLAB. The program listing appears in Appendix E.
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C. THIN WIRE SIGNAL TESTING

The Cadzow-Solomon algorithm was also tested using thin

wire measured scattering data. The results have been compared

with the results obtained using time domain integral equation

(TDIE) thin wire data. The poles obtained by processing the

TDIE computed data were assumed to be correct, even though the

program that computes the currents on the thin wire does not

take into account the capacitance at the ends of the wire.

I. Thin Wire Integral Equation Computed Data

For the thin wire, the natural resonances may be

determined by solving the integral equation that describe~the

current flowing on the wire. The result of this type of

simulation is the response of the wire to a specified

excitation field. Morgan [Ref. 14] developed a time-

domain thin wire integral equation computer routine, based on

the formulations of Sayre and Harrington (Ref. 15].

The wire used for this simulation had a length of 0.1 meter

and a radius of 1.18 mm. The back-scattering response was

computed at three different incident aspects, ranging from 30

to 90 degrees, with 90 degrees representing a broadside

aspect. The excitation waveform used was the same double

Gaussian as that used with the synthetic data, as illustrated

in Figure 11. Figure 30 illustrates the position pole

estimates obtained using Cadzow-Solomon algorithm and shows

the aspect independence of the poles for three cases. The
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five low frequency poles appeared exactly at the same position

for all aspects. It should be noted that these results, as

illustrated in Figure 30, appeared to be exactly the same,

irrespective of any variations in the parameters (No. of

points - No. of asking poles - No. of asking zeros) used in

processing the signal. Note that for broadside illumination,

only the odd-numbered poles appear. Because of the physical

symmetry of both the thin wire and incident field, the even-

numbered modes are prevented from being excited by the

incident field. With illumination at 45 degrees aspect, a

spectrum with adequate energy only within the bandwidth from

1 to 8 GHz was produced, as expected. At higher frequencies,

backscattering is suppressed because most of the energy is

reradiated near to the specular scattering directions.

Therefore, only the five low frequency poles are accurately

obtained for this case.

The TDIE program generated a response at 30 degrees

aspect consisting of 255 points over 5 nsec, resulting in a

sampling frequency of 50.8 GHz. In the case of 45 and 90

degrees aspect consisting of 240 points over 5 nsec, a

sampling frequency of 47.8 GHz resulted. These sampling

frequencies differ from the sampling frequency of 51 GHz used

in the measured data.

When processing the TDIE thin wire data, points from

160 to 200 were used to run the algorithm starting at the

point where the excitation starts. The number of asking poles

53



ranged from 28 (for the 90 degrees aspect) to 40 (for the 30

degrees aspect). The number of asking zeros or feed-forward

order of the system was either the same as the number of

asking poles or, was calculated by determining the length of

early-time. This early-time was computed from the formula

t=-'(l+cos4) (49)SC

where,

* L is the length of the wire and

• a is the aspect angle from end-on orientation.

This value of time was then converted to the appropriate

number of time points, as based on the sampling time interval

of

nb= intege+S- ]+I (50)

where,

" T is the sampling interval, and

" nb is the feed-forward order of the system.

This value of nb is the minimum number of asking poles that

may be used, presenting the number of delays in the z-

transform for the early-time of the system.

Another consideration in the processing of these data

was the scaling of the excitation waveform and its position

with respect to the computed response. Although the data were

generated using a double Gaussian waveform with a 1 Volt peak
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amplitude, the excitation waveform had approximately the same

peak amplitude as the response waveform. Such scaling does

not change the frequency contents of the exciting waveform and

gives better results in the pole extraction due to

minimization of some of the effects of ill-conditioning in the

data matrix.

To position the driving waveform with respect to the

response waveform, the time difference between the excitation

of the first and last point of the wire may be computed. This

time interval is represented as

tdeay" 
52L
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where a is the aspect angle. The maximum absolute value of

the response occurs when the last point of the wire is being

excited. The information derived from the time interval,

tdelay, and the maximum absolute value of the response allows

the excitation waveform to be positioned with the first point

of the wire.

2. Thin Wire Measured Data

Measurements were performed in the Transient

Electromagnetic Scattering Lab (TESL) to test the algorithm by

using a thin wire with the same dimensions as the one used for

the previous simulation. A detailed explanation of the

procedure and the techniques used for measuring the scattering

response from the thin wire, as well as other scale model
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targets may be found in Morgan and McDaniel [Ref. 16]

and Bresani [Ref. 17].

One measurement was available for each of the aspects

at 30, 45 and 90 degrees. The scattering response waveforms

obtained from the measurements are illustrated in Figures 24,

26 and 28. These waveforms were compared with the calculated

waveforms obtained from the TDIE program. It can be seen from

the figures that the natural modes between the calculated and

the measured waveforms do not have exactly the same

frequencies.

The spectrum of the measured response waveforms were

also obtained, giving a distribution of energy within the

bandwidth 1-12 GHz on eight frequencies, as shown in Table

III:

Table III DISTRIBUTION OF ENERGY WITHIN THE SPECTRUM OF
THIN WIRE

Aspect Frequencies Frequencies Frequencies
[degrees] [GHzJ with [GHz) with [GHz] with

most energy less energy no energy

30 3,4.4,5.8, 1.6,8.6,10.2 11.6
7.2

45 3,4.4 1.6,5.6 7.2,8.6,10.2,
11.6

90 1.6,4.4 7.2 3,5.6,8.6,
10.2,11.6
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Figures 25, 27 and 29 illustrate the spectrum of the measured

thin wire scattering response for each aspect.

When the measured thin wire response was processed,

the points used to run the algorithm were from 180 to 200,

starting at the initial excitation point, while the number of

asking poles ranged from 30 to 60. The best results were

obtained when the number of asking poles approached 40. The

feed-forward order of the system was either the same as the

number of asking poles, or was calculated by determining the

early-time length. The scaling of the driving waveform and

the positioning of the excitation with respect to the response

was computed, as previously described. Figure 30 illustrates

the extraction of the poles from the TDIE response, while

Figure 31 illustrates the extraction of the poles from the

measured waveform for the combined aspects. Figures 32-37

illustrate the extraction of the poles from the measured

waveform for each aspect separately. The pole results

obtained using both the bias compensation method developed in

this thesis and Cadzow-Solomon's bias compensation method have

been plotted in Figures 32-37 along with the poles obtained

without any bias compensation method, so that the results from

the three types of methods may be compared.
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IV. POLES FROM SCALE MODEL AIRCRAFT

Scattering data for four different scale model aircraft

targets were processed without bias compensation, using the

Cadzow-Solomon algorithm. Poles were extracted from the

measured scattering responses of the aircraft targets to

double-Gaussian electromagnetic excitation incident at 0, 30,

90, and 180 degrees. The 0 degree aspect represents a nose-on

measurement, while the 90 degree represents a broadside

measurement. Signatures are shown in Figures 38-45 for targets

1 and 2.

The bandwidth of the TESL, 1-12 GHz, was matched to the

scaling factor of the model aircraft targets. This scaling

factor was 1/72 for all of the model aircraft targets used.

Table IV contains the full scale, significant dimensions of

these aircraft targets. The aircraft data was collected by

Bresani [Ref. 17] at the four incident angles, as previously

described.

Table IV SCALED DIMENSIONS OF AIRCRAFT TARGETS

Target number 1 2 3 4

Overall length (cm) 26.5 22.5 23.6 26.2
Wingspan (cm) 19.8 19.0 16.4 16.0

68



A. DATA PROCESSING

The model aircraft scattering data was processed using a

number of time points ranging from 200 to 240. The algorithm

processing was started at the point of initial excitation.

The positioning of the excitation waveform was set up

manually with respect to the response waveform from observa-

tions of the scattering data. Manual positioning for the

driving waveform was required as no obvious condition existed

for the model aircraft, as was the case for the thin-wire.

The number of asking poles was set to 60, as the value of

60 was found from previous experimentation to represent the

most suitable results. The number of asking zeros was the

same as the number of asking poles. This value was based on

the fact that the computed early-time for the aircraft target

is usually about 2L/c. Conversion of this early-time to the

appropriate number of time points (equal to the number of

asking zeros) provides a number larger than the number of

asking poles. However, the number of asking zeros may not be

larger than the number of asking poles, the two values are set

to be equal.

B. RESULTS FROM EXTRACTING THE POLES

The model aircraft scattering data showed that the poles

were less likely to group than the thin-wire data. The highly

complex nature of the aircraft scatterer combined with the
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small number of significant data points (about 150) became a

difficult problem for the algorithm to solve.

Figures 46-47 illustrate the spectrum of the data record

for aircraft targets I and 2, for different incident angles.

Figures 48-51 illustrate the extraction of the poles from

the same aircraft target for the combined aspects. To obtain

an initial indication of the possibility of target identifi-

cation by pole extraction, nose-on measurement results have

been compared in Figures 52-53.

The thin wire data (Chapter III) indicated that the

principle poles provided well defined clusters for all the

incident angles examined, despite the use of a wide range of

processing parameters. However, the scale model aircraft

targets did not provide any well defined clusters under the

limited attempts at pole estimation conducted here. The prin-

ciple reason for this difference appears to be that the scale

models have more complicated pole patterns than the thin wire

targets and insufficient time was available to explore ideas

for optimizing the performance of the estimation algorithm.

Processing the experimental scattering data for aircraft

models, as performed herein, is only an initial attempt to

demonstrate resonance estimation for real-world targets

embodying complex configurations. Processing for this

aircraft data was conducted for only one week at the end of

the thesis research. It is recommended that this same data be

used for a follow-on thesis.
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY

This thesis has attempted to demonstrate radar target

identification by building on the earlier work of Norton [Ref.

11], Larison [Ref. 12] and Murphy (Ref. 13]. The largest

portion of the work consisted of testing the Cadzow-Solomon

algorithm using synthetic and thin wire measurement data.

Chapter I introduced the use of the Kumaresan-Tufts and

the Cadzow-Solomon algorithms to locate target poles for a

Non-Cooperative Target Recognition system. The resonance-

based radar target identification problem was discussed and

the transient electromagnetic scattering described.

Chapter II consisted of two parts. The first part

discussed early methods used to solve target identification

problems. This discussion included a description of Prony's

method and also, Singular Value Decomposition on which the

Kumaresan-Tufts and Cadzow-Solomon algorithms were developed.

The Kumaresan-Tufts algorithm was developed in detail,

including Norton's bias compensation method. The performance

of the Kumaresan-Tufts algorithm was also dem6nstrated, as

illustrated in Figures 3 through 10. The second part

described the Cadzow-Solomon algorithm. Two bias compensation
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methods were included: that of Cadzow-Solomon and that of the

author.

Chapter III demonstrated the Cadzow-Solomon algorithm

testing in two phases. The first phase of testing was

performed with synthetic data, while the second phase was

performed with thin wire measurement data. The thin wire data

testing phase attempted to evaluate conditions appearing from

a real target response. Results of the synthetic signal model

testing are illustrated in Figures 13 through 23. The results

of the thin wire scattering signature testing are illustrated

in Figures 24 through 37.

Chapter IV considered an initial attempt at extraction of

poles from scale model aircraft measurements obtained in the

NPS Transient Electromagnetic Scattering Lab. Measurement

data was processed using the Cadzow-Solomon algorithm and the

unsuccessful results are illustrated in Figures 38 through 53.

Testing of both the Kumaresan-Tufts and the Cadzow-Solomon

algorithms was performed using MATLAB programs. A sequence of

programs was written to complete the demonstration of the

target identification problem. Appendices A to E present only

a part of this sequence of programs, including the theoretical

models of the Cadzow-Solomon algorithm.
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B. CONCLUSIONS

Both the Kumaresan-Tufts and the Cadzow-Solomon algorithms

can effectively extract poles from the scattering response of

simple high-Q targets such as thin wires. As the late-time

portion of the response signal is weak (with low SNR) and the

Cadzow-Solomon algorithm has the ability to use the early-time

portion, this thesis concentrated mainly on the use of the

Cadzow-Solomon algorithm.

The Cadzow-Solomon algorithm extracts poles of

synthetically generated data, integral equation computed data,

and thin wire measured scattering data with excellent results.

A signal-to-noise ratio above 10 dB is required, depending on

the damping rate of the data. The system order is

intentionally overestimated. The excess order provides the

flexibility to model the noise and improves the estimation of

parameters of exponentially damped sinusoidal signals in

noise. The Singular Value Decomposition method alleviates

severe ill-conditioning of the data matrix. Backward

prediction and SVD are used to separate the computed signal

poles from spuriously computed noise poles introduced by the

overestimated system order.

The most critical parameters required for the successful

thin-wire processing were the selection of the appropriate

starting point to begin the data processing and the

appropriate system order. The best results were obtained with

the starting point of the data processing set at the
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excitation starting point, and with the processing system

order at about 3 times the true system order.

The existence of noise in the target's response produces

a bias in the positioning of the extracted poles. Thus,

several bias compensation schemes may be developed.

Given a very limited initial effort, the Cadzow-Solomon

algorithm was unable to extract poles of scale model aircraft

scattering data with adequate accuracy. It is conjectured

that the data points in the natural mode information response

are too few for the algorithm to model both the target poles

and the noise poles.
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APPENDIX A. ARMA COEFFICIENT AND RECURSIVE SIGNAL GENERATOR

PROGRAM LISTING

ARMAGENi .

%Program generates a(k), b(k) coefficients of

b(O)+b(l) *zA-1+.. .+b(q) *ZA-q

1 +a(l) *zA-1+. ..+a(p)*ZA-p

% given the s-plane poles, residues, number of time points
% and time window.
% Programed by Gregory Lazarakos, 5 Mar 1991.

!del temp.mat
case='synt';

dt=tO. /(notp-1);
i=sqrt(-l);
dm=exp ((sigma+i*omega) *dt);
alpha=ampl. *exp(i*phase);
dm=dm';
alpha=alpha';
['Please wait...']
[b,aJ=residue(alpha,dm,O);
A=real(a);
B=real (b);

% Program generates time response of an ARMA system
% via the equation

*N L
y y(n) = SUM A (k) *y (n-k+1) + SUM B (k) *x (n-k+l) , for n=1: notp
*k=2 k=1
* given A(k), B(k) and input excitation record x(n).
* Programed by Gregory Lazarakos, 10 Mar 1991.

N=size (A);
N=N(2);
L--size(B);
ILL(2) ;
for j=2:N

A(j)=-A(j);
end

['Excitation is double Gaussian']
excgen
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['Please wait...'1)

ye=zeros (l,notp);
ye (1)=B (1)*x(1) ;
eriergy=(ye(l)) A 2;
for n=2:notp

ye(n)=O.O;
Ln=[n;LJ;
Lzmax=min(Ln);
for ]c=l:Lmax

ye(n)=ye(n)+B(C) *x(n-JC+l);
end
Nn=[n;NJ;
Nmax-min(Nn);
for J=2:Nmax

edye(n)=ye(n)+A(C) *ye(n-Jc+1);

energy=energy+ (ye (n)) A 2
end
rms=sqrt(energy);
ic=zeros (1,notp);
for n=1:notp

ic (n) =ye (n) /rms;
end

axis((0 notp -0.4 0.8])
plot(ic)

title(['Generated signal w/o noise, medium Q, by
',int2str(nop),' poles']);

xlabel('time points');
ylabel('amplitude rms');
grid;
pause
hard=input('Do you want a hardcopy for the plot? [n]

if hard=='y'
plotfile=input ('Enter filename :',Is');
eval (['meta ',plotfileJ)

end
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APPENDIX B. DOUBLE GAUSSIAN SMOOTHING FUNCTION GENERATOR

PROGRAM LISTING
EXCGEN.M

%
% Program generates excitation record x(n) for a response
% from TESL data and synthetic data,
% via the equation of a double Gaussian waveform
%

% x(n) = Al*exp(-al*tA2) - A2*exp(-a2*tA2)

% given the time window.
* Program uses input values of the 10% height of the low
% and high frequency ends of the double Gaussian frequency
% response to determine the pulse widths in the time domain.
* Programed by Gregory Lazarakos, 8 Apr 1991.
% Last Revision August 6, 1991.
if case==°meas'

if filename(1)=='F'
LENGTH=0.25;

elseif filename(siz-l:siz)=='sp'
LENGTH=eval(filename(3:4));
LENGTH=LENGTH/100;

else
LENGTH=0.1;

end
end

npts=notp;
tmin=0.0;
tmax=tO;
DT=dt;
TI=0.147;
T2=0.314;
thr=input('Enter threshold value for time in nsec

[1.25]:');
if isempty(thr)

thr=l.25;
end
al=(4.0.*log(10)) ./(Tl.A2);
a2=(4.0.*log(10))./(T2.A2);
Al=sqrt(al) ./(sqrt(al)-sqrt(a2));
A2-AI-1.0;

if case-='synt'
point=input('Which to be the point, the excitation

starts?');
x=zeros(1,npts);
for n=l:npts
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t= (n-li-point) .*T
if t<=thr

e2=A2.*exp(-a2. *t.A 2);
x (n) =el-e2;

else
x(n)=O.O;

end
end

elseif case=='ineas'
asprad=aspect* (pi/iBO);

top=input('Do you want to position the excitation, auto or
manual ? (a,m) : ',I);

if top=='a'
[maxic, indexij=max(ic);
(minic, index2]=min(ic);
x=zeros(l,npts);
tdel=cos(asprad) *(2*LENGTH/3e8);
ndel=round(tdel/(dt*le-9));
if abs (maxic) >=abs (mminc)

point=indexl-l1-ndel;
for n-=l:npts

t=(n-indexl+ndel).**DT;
if abs (t) <=1O*DT

el=A1.*exp(-al. *t.A 2);
e2=A2.*exp(-a2 .*t.A 2);
x (n) =el-e2;

else
x(n)=O.O;

end
end
x=x*O.6;

else
point=index2-ll-ndel;
for n~l:npts

t-(n-index2+ndel) .*DT;
if abs(t)<=lO*DT

el=A1.*exp(-ai. *t.A2);
e2=A2.*exp(-a2 .*t.A2);
x (n) =el-e2;

else
x(n)=O.O;

end
end
x=x*O. 6;

end
end
it top=='u'

point=input ('Which to be the point, the excitation
starts ? ');

x-zeros(l,npts);
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f or n=l:npts
t=(n-ll-point) .*DT;
if abs(t)<=10*DT

el=A1.*exp(-al. *t.A 2);
e2=A2.*exp(-a2 .*t.A 2);
x(n)=el-e2;

else
x(n)=O.0;

end
end
x=x*. 6;

end
ltst=(l+cos (asprad) ) *(LENGTH/3e8);
nltst=round(ltst/(dt*le-9));
ltimp=point+22+nltst;

else
exit

end

if case=='Isynt'
axis((0 notp -0.4 1])
plot (x)

title ('Double-Gaussian Si.,oothing Function');
xlabel ('time points');
ylabel('amplitude rms');

elseif case=='meas'

if filename(l)=='F'
title ([' 'Data response signal from aircraft I, flnm(1:3),'

aspect=' ,num2str(aspect),' deg 1]);
elseif filename(siz-l:siz)=='sp'

title ((' IData response signal from sphere' I, fiea (3: 4) , 'cm,
aspect=' ,num2str(aspect),'I deg 1]);

else
title(['Data response signal from thin wire,

aspect=' ,nui2str(aspect),' deg ']);
end
xlabel ( solid=response dash=excitationt);
ylabel('amplitude ');
text(ltimp,0.1,' ----- late time ----- >)
if filename(l:2)=='et'
text(l00,O.4, 'TDIE response');

end
grid;

else
exit

end
pause
hard-input ('Do you want a hardcopy for the plot?

[nJ :1 ,'s');
if hard=='y'
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plotfile=input('Enter filename:',s)
eval ([( meta ',plotfile])

end
if case=='meas'

save temp ic energy x point dt tO notp f ilename aspect siz
LENGTH
end
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APPENDIX C. SYNTHETIC NOISE GENERATOR

PROGRAM LISTING
NOISEGEN .

%Synthetic Noise Generation
%Programmed by Greg Lazarakos 20/2/91

SN=input('How many db ? (7,10,20,30) [20]:');
if isempty(SN)

SN=2 0;
end
sn=SN./l0;
sn=10. A sn;
en=O;
f or k=1:notp

en=en+(ic(k)) A 2;
end
ava=en./ (notp. *sn);
ava=sqrt(ava);
rand( 'normal')
w=rand (ic) *ava;
ic=ic+w;

save temp ic x point f ilename w ye energy dt dm notp omega
sigma to

axis([0 notp -0.4 0.8))
plot(ic)

title(' 'Generated signal with noise S/Nm' ,int2str(SN),I db I]);
xlabel('time points');
ylabel('amplitude rms');
grid;
pause
hard=input('Do you want a hardcopy for the plot?

[n] :I',Is
if hard=='y'

plotfile=input('Enter filename : ',Is');
eval (C['meta ',plotfile)

end
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APPENDIX D. SPECTRUM ESTIMATION

PROGRAM LISTING
SPECTRUM. M

% Programed by Gregory Lazarakos, 16 Apr 1991.
% Last revision, 6 Aug 1991.
df=1./((notp-1) .*dt);
IC=fft(ic,notp);
f=(0:notp-1) *df;
fmax= . /dt;
axis((O fmax -3 3])
plot(f,IC)
title(IFourier transform of the response signal');
xlabel('Frequency in GHz');
ylabel( 'Amplitude');
grid;
pause
SIC=(abs(IC)) .A2;
SIC=SIC/notp;
axis([O 20 0 max(SIC))
plot(f,SIC)
if isempty(SN)
title(ISpectrum of the response signal 1);
else
title(['Spectrum of the response signal with

S/N=',int2str(SN),' db'j);
end
xlabel('Frequency in GHz');
ylabel( 'Amplitude');
grid;
pause
hard=input('Do you want a hardcopy for the plot?

[n] : ',Is');
if hard=='y'

plotfile=input('Enter filename :',Is');
eval ([( meta ',plotfile)

end
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APPENDIX E. THE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM

PROGRAM LISTING
CADSOL1 .M

%Cadzow-Solomon's Algorithm for Extracting the Poles
%and Residues
%Version 1.0
%Programmed by Greg Lazarakos 3/16/9 1

%Set the first sample (Icapa)
if point>0

kapa=point;
elJ.se

kapa=1;
end
%Set the number of samples (CN)
CN=input('How many samples to process ? (>120) [200]:');
if isempty(CN)

CN=2 00;
end
%Compute the SNR for the processed time window
en=0;
nen=O;
for k=kapa:CN

en=en+(i4c(k)) .-2;
nen=nen+(w(k)) .A2;

end
SNR=en./nen;
SNR=10.*loglO(SNR);
%Set the number of poles (CL) > number of real poles (CM)
%CM <z= CL and 2*CL <= CN-CL
CL--input('How many unknown poles ? (>20) (60]:')
if isempty(CL)

CL=-60;
end
%Set the number of expected zeros (CK)
CK=input('How many expected zeros ? (No. poles): ');
if isempty(CK)

CK=CL
end
('Please wait...'

% Forming the matrix YI((CN-CL)*CL) from the data ic(n)
YI=zeros (CN-CL, CL);

for j=kapa+1: CN-CL+kapa
YI(j-kapa,:)=ic(j:j+CL-1);

end
% Forming the matrix h[(CN-CL)*1] from the data ic(n)
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h=( J
h=ic (kapa: CN-CL+kapa-l);

% Forming the matrix XI[(CN-CL)*CKJ from the data x(n)
XI=zeros (CIT-CL, CK);

for J=1:CN-CL
XI(j, :)=x(j:j+CK-l);

end
% Unify matrices YI and XI as I=[YIIXI]

I=[YI XI];
%Set the tolerance
tol=0. 000001;t
%Find the vector of backward prediction coefficients
beta=pinv(I,tol)*(h]; I

%Set the coefficients of the prediction-error filter
polynomial

ca=zeros(l,CL+l);
ca(1) =1;

for j=l:CL
ca (j +1) =-beta (j)

end
% Set the coefficients of the polynomial B(z)

cb=zeros(l,CK);
for j=l:CK

cb (j )=beta (j +CL);
end

% Find the residues and the poles
[resid,d,gk]=residue(cb,ca);

% Find the signal poles
s=log (d) /dt;
k=0;
1=0;
for j=l:CL

if real(s(j))>0,
k=k+l;
polesl(k)=-s(j);
residl(k)=resid(j);

else
1=1+1;
nopol1(1) =-s (j);
noresl(1)=resid(j);

end
end
dml=exp (polesl*dt);
dm2=exp (nopoll*dt);
alphal=exp (residl*dt);
CH=k;
[('The signal has the following ',num2str(C4) ,'I real poles.-']
polesi
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